e content for students of patliputra university

B. Sc. (Honrs) Part 2paper 3

Subject:Mathematics

Title/Heading of topic:Tests for convergence of infinite series (Raabe's test, logarithmic test, Integral test)

By Dr. Hari kant singh

Associate professor in mathematics

Rrs college mokama patna

. Raabe's Test

Let $\sum_{n=1}^{\infty} u_n$ be a positive term series such that

$$\lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}} - 1\right) = l$$

Then (i) $\sum_{n=1}^{\infty} u_n$ converges if l > 1

(ii) $\sum_{n=1}^{\infty} u_n$ diverges if l < 1

(iii) Test fails if l = 1

Example Test the convergence of the following series:

$$(i)\frac{2}{3} + \frac{2.4}{3.5} + \frac{2.4.6}{3.5.7} + \frac{2.4.6.8}{3.5.7.9} + \dots (ii) + \frac{3x}{7} + \frac{3.6 x^2}{7.10} + \frac{3.6.9x^3}{7.10.13} + \dots (x > 0)$$

Solution:(i) Here
$$u_n = \frac{2.4.6...2n}{1.3.5...(2n+1)} \Rightarrow u_{n+1} = \frac{2.4.6...2n(2n+2)}{1.3.5...(2n+1)(2n+3)}$$

Then
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{2n+2}{2n+3} = 1$$

Hence Ratio test fails.

Now applying Raabe's test, we have

$$\lim_{n \to \infty} n \left(\frac{u_n}{u_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left(\frac{2n+3}{2n+2} - 1 \right)$$
$$= \lim_{n \to \infty} \left(\frac{n}{2n+1} \right) = \frac{1}{2} < 1$$

Hence by Raabe's test, the given series diverges.

(ii) Ignoring the first term,
$$u_n = \frac{3.6.9...3n}{7.10.13...(3n+4)}x^n$$

$$\Rightarrow u_{n+1} = \tfrac{3.6.9...3n(3n+3)}{7.10.13...(3n+4)(3n+7)} x^{n+1}$$

Then
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{3n+3}{3n+7} x = x$$

Hence by Ratio test, the given series converges if x < 1 and diverges if x > 1

Test fails if x=1

When
$$x = 1$$
, $\frac{u_n}{u_{n+1}} = \frac{3n+7}{3n+3}$

$$\Rightarrow \lim_{n \to \infty} n \left(\frac{u_n}{u_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left(\frac{3n+7}{3n+3} - 1 \right)$$

$$= \lim_{n \to \infty} \frac{4n}{3n+3} = \frac{4}{3} > 1$$

Hence by Raabe's test, the given series converges if x = 1

 \therefore the given series converges if $x \le 1$ and diverges if x > 1.

. Logarithmic Test

Let $\sum_{n=1}^{\infty} u_n$ be a positive term series such that

$$\lim_{n\to\infty} n \frac{u_n}{u_{n+1}} = l$$

Then (i) $\sum_{n=1}^{\infty} u_n$ converges if l > 1

(ii)
$$\sum_{n=1}^{\infty} u_n$$
 diverges if $l < 1$

Example. Test the convergence of the series

$$x + \frac{2^2x^2}{2!} + \frac{3^3x^3}{3!} + \frac{4^4x^4}{4!} + \cdots$$

Solution: Here
$$u_n = \frac{n^n x^n}{n!} \Rightarrow u_{n+1} = \frac{(n+1)^{n+1} x^{n+1}}{(n+1)!}$$

Then
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(n+1)^{n+1}x}{(n+1)n^n}$$
$$= \lim_{n \to \infty} \frac{(n+1)^n x}{n^n}$$
$$= \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n x = e.x$$

Hence by Ratio test , the given series converges if ex < 1 $i.e. x < \frac{1}{e}$ and diverges if ex > 1 $i.e. x > \frac{1}{e}$

Test fails if ex = 1 i. $e.x = \frac{1}{e}$

Since $\frac{u_{n+1}}{u_n}$ involves e : applying logarithmic test.

$$\frac{u_n}{u_{n+1}} = \frac{1}{\left(1 + \frac{1}{n}\right)^n x}$$

 \therefore By logarithmic test, the series diverges for $x = \frac{1}{e}$.

Hence the given series converges for $x < \frac{1}{e}$ and diverges for $x \ge \frac{1}{e}$.

Cauchy's Integral Test

If u(x) is non-negative, integrable and monotonically decreasing function such that $u(n)=u_n$, then if $\int_1^\infty u(x)\ d(x)$ converges then the series $\sum_{n=1}^\infty u_n$ also converges.

Example Test the convergence of the following series

$$(i)\sum_{n=1}^{\infty} \frac{1}{n^2+1}$$
 $(ii)\sum_{n=2}^{\infty} \frac{1}{n(\log n)}$

Solution:(*i*) Here $u_n = \frac{1}{n^2+1}$.

Let
$$u(x) = \frac{1}{x^2+1}$$

Clearly u(x) is non-negative, integrable and monotonically decreasing function.

Consider
$$\int_{1}^{\infty} \frac{1}{x^{2}+1} d(x) = [tan^{-1}x]_{1}^{\infty}$$
$$= tan^{-1}\infty - tan^{-1}1$$
$$= \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \text{ which is finite.}$$

Hence $\int_1^\infty \frac{1}{x^2+1} d(x)$ converges so $\sum_{n=1}^\infty \frac{1}{n^2+1}$ also converges.

(ii) Here
$$u_n = \frac{1}{n(\log n)}$$
.

Let
$$u(x) = \frac{1}{x(\log x)}$$

Clearly u(x) is non-negative, integrable and monotonically decreasing function.

Consider
$$\int_2^\infty \frac{1}{x(\log x)} d(x) = \log(\log x) - \log(\log x) = \infty$$

Hence
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)}$$
 diverges.